Semiconducting SWNTs (IsoNanotubes-S)

Semiconducting SWNT’s

Overview

FE-SEM of IsoNanotubes-S Thick Film

Image by Najia Mahdi of NORCADA

 

Diameter Range 1.2nm-1.7nm
Length Range 300 nm to 5 microns
Solution Color Light Crimson/ Pink
Metal Catlyst Impurity <1%
Amorphous Carbon Impurity 1-5%
Electronic Enrichment 90%, 95%, 98%, 99%, and 99.9%

Product Applications

The IsoNanotubes-Semiconducting product has been successfully utilized in numerous scientific works over the years. The primary usage for the IsoNanotubes-S material is for the creation of thin film transistors. Because of the IsoNanotubes-S’ high single-walled nanotube purity, length, pristine surface, and semiconducting properties, this material has proven beneficial in applications such as Gas Detection, Temperature Sensing, CMOS circuit creation, and has laid the ground work for the development of novel and exciting technological advancements.

Temperature Sensing/ Wearable Devices

Mechanically flexible CMOS digital and analog circuits were fabricated on a polyimide substrate by monolithic ingegration of n-type TFTs, p-type CNT-TFTs, and a temperature sensor made of CNTs and PEDOT:PSS, with the CNT source being NanoIntegris’ IsoNanotubes-S 99% solution. [1] The following electrical properties of the CNT-TFTs were found: field-effect mobility of 9.95 ±2.08cm2V-1s-1, on-current (Ion)/off-current (Ioff) ratio (Log Ion/Ioff) of 4.65 ±0.70V and threshold votage of -1.63 ±0.24V.

The flexible CMOS J-K flip flop digital circuit was also found to a memory function demonstrated when 5 or 0 Volts were applied to the J and K inputs. When operated, the power consumption at steady state was ~68.7nW/mm and 6.34 µW/mm with an applied CLK signal. It was also found that the electrical properties remained unchanged (no malfunction or TFT leakage) with a bending radius of 5.6mm and 500 bending cylces.

Additionally, analog circuits were fabricated in the form of a differential amplifier. The circuit produced a peak gain of ~31.7dB, corresponding to a 38.5 times amplification. This amplified was utilized to fabricate a temperature sensor in which the electrical resistance was decreased with increasing temperature. In the temperature range of 28 and 34°C, the rate of voltage change was found to be 0.4V/°C when using the amplifier, with a range that can be tuned by changing the input voltage. Such an approach can used for creating wearable devices for monitoring skin temperature.

[1] Adv. Mater. Technol. 2016, 1, 1600058.

Gas Detection

Members of the Sensor System Research Center at the Korea Institute of Science and Technology have created a highly sensitive gas detector by using platinum nanoparticles decorated with NanoIntegris’ IsoNanotubes-S 99% single-walled carbon nanotubes. [1] These sensors were able to detect numerous gases such as NO2, NO, C6H6, C7H8, C3H6O, CO, and NH3 but proved the most successful in the detection of nitrogen dioxide (NO2) at sensitivities down to 2ppm. It was also greatly promising to find that the sensors showed almost complete recovery (~95%) and facilitated both chemisorption and dissociation of NO2 molecules.

[1] Sensors and Actuators B 238 (2017) 1032-1042.

Product Delivery

We currently offer our nanotube products in two forms: Aqueous surfactant solution and surfactant-eliminated “powder” (thick film or buckey paper). We remove the surfactant from our powders via a proprietary process that involves filtration and rinsing. The end result is a film-like structure, as can be seen in the above picture, bearing a density around 1mg/ 4.8cm2. Our powders have been formulated so that they are easy to use, break apart, and disperse in solvents with gentle sonication.

Prices

Multi-gram and kilogram price quotes available by request. Additional discounts also available for large volume orders.

To place an order contact our Sales Manager at sales@nanointegris.com or call +1-866-650-0482.

 

Product Purity Solution ($ USD) Thick Film ($ USD)
1mg, 99.9% $1000 $1050
1mg, 99% $900 $950
2mg, 98% $1000 $1100
3mg, 95% $1000 $1100